Dr. Charles Bates is inconclusive when asked what guided him into a metalcasting career that has been both academically and commercially successful, one that’s now in its fifth decade and continuing with spirited enthusiasm. He can identify some contributing factors, but his focus i on researching more practical issues. In a rambling style Bates lists a range of circumstances and experiences, all of which shaped his development as a “research professor” — and one worthy now of recognition in the FM&T Hall of Honor for the results and influence of his work.

What emerges is the tale of a fully developed metalcasting career, with experiences in production, academic programs, and practical research. He’s gained expertise in casting aluminum, steel, and iron, and he’s been exposed to the range of foundry processes and production methods. Dr. Bates calls what he does “applied research,” in a way that makes it clear how much value he places on actionable results.

Bates was born in Shelby, AL, a small mining community that once thrived as a source of iron for cannons and ship plates in the Civil War era, but those details had no influence on his future plans. As a student at the University of Alabama he began to focus on engineering, first chemical engineering, then metallurgical engineering, a choice that directed him to a co-op position with the James B. Clow Co. in Birmingham. “I coop’ed for two years in the iron foundry,” he recalled, “running basic quality control tests, wet chemical analyses, … breaking tensile tests, breaking transverse bars, just generally running around the plant and picking up samples, and bringing them back to the lab and checking consistency.”

While still an undergraduate, Bates landed a position at Ford Motor Co. in Sheffield, AL, then the world’s largest aluminum foundry. Once he’d earned a B.S. in Metallurgical Engineering and decided to pursue graduate studies in metalcasting, a Ford supervisor suggested the program at Case Institute of Technology in Cleveland. There, working with the renowned professor Jack Wallace, Bates got “deeper and deeper into foundry metallurgy.

“At Case I spent a couple of years working on mold-wall stability, mold-wall movement, steel-casting quality, … primarily with steel,” Bates explained. “And then, I switched over and got an iron project that dealt with trace element effects, pearlite stabilization, nodule degradation, flake degradation, mostly caused by various tramp elements – antimony, tin, arsenic, those kinds of things — and how you could neutralize them, if at all you could.”

He earned two more degrees at Case and learned the research methods that have been the basis of his work. But, understanding metallurgy is only part of the skill of applied research. “I have always enjoyed going into operations and trying to figure out what the root problem was, not just the manifestation of the problem,” Dr. Bates reflected, “and solving it. That’s been my pleasure all through the years.”