There are similarities in every story of every man and woman who devotes their energies, their career, their life to metalcasting. The casting process fascinates them. They have mentors and colleagues whose achievements they emulate or extend. They have a series of accomplishments that reveal deeper truths about science and humanity. And each of them recalls with clarity the moment when first they were fascinated by metalcasting.

In those details, Dr. Alan Druschitz is no different than his cohort, but there is something more about his experience that earns his recognition in the Foundry Management & Technology Hall of Honor, and at the same time makes his tale a ledger in which to read the course of metalcasting progress over the past four decades. They were decades of technological progress and organizational turnover, an era that nonetheless led to the current moment – with both the science and the industry on the verge of new growth possibilities.

And through these decades Dr. Druschitz —Associate Professor at the Department of Materials Science and Engineering at Virginia Tech; Director of VT-FIRE (Foundry Institute for Research and Education) located at the Kroehling Advanced Materials Foundry ; and Foundry Educational Foundation Key Professor — has demonstrated in research, in manufacturing, in design, and in education that inquiry must be guided by practicality, and that technological progress is useless without a dedication to understanding causes and effects.   

It happens that his experience also illustrates the deeper meaning of all the changes in the metalcasting industry over that past four decades. The shifting circumstances of owners and operations is undeniable, but the increase in metalcasting process capabilities, the expansion of technological resources, the surge in development for new products and materials, and the acceleration of more detailed knowledge about all of these things — all are evidence of progress. 

Alan Druschitz grew up in Chicago’s western suburbs, not in a place or even a family in which metalcasting was already embedded. The son of a mechanical engineer and a nurse, he had an unrefined instinct about the link between ideas and results.  “I always had an interest in mechanical things,” he recalled, and did a lot of work in modeling. Plastic models, and then radio-controlled airplanes. I enjoyed the design and building of airplanes. I wasn’t so great as a flyer of the airplanes as some of my friends were, but the more technical aspects of design, construction, materials, I really enjoyed that.  It gave me something to do, and because of that, when I was in high school I tended more toward chemistry and math, the sciences and the engineering skills.”

Inspiration at IIT

None of that provided any clear goal when he graduated high school and entered the Illinois Institute of Technology in Chicago. “I didn’t really want to be a mechanical engineer,” Druschitz said. “I liked the aircraft and aerospace world but at that time they were doing a lot of layoffs in that industry, so I started college in (studying) chemical engineering. And I knew chemical engineering would allow me to switch to anything else.”

However: “I knew I didn't like electrical engineering. I never have understood things you cannot see,” and so he gravitated toward materials engineering. “I just fell in love with metallurgy and materials at that time,” he recalled.

There was another consequential discovery at IIT. “I really liked the professors there,” Druschitz said. “The Metallurgy Dept., like most materials/metallurgy departments, was very small. My whole class was seven or eight students. But, a lot of professors came from industry, and then moved into teaching. I thought that really worked out well because they taught us the theories, the understanding of the science, but they always had the practical, real world insights included in their lectures.”

There was a benefit to the intimate scale of this program. Druschitz came to appreciate the individuals as well as their skills and the insights they delivered. “There was nothing they wouldn’t do for a student,” he said. “If you were interested in studying something, they would help you with that.”

He listed his IIT academic advisor Paul Gordon, who had worked on the Manhattan Project and wrote books on diffusion, and the Metallurgy Department head Norman Breyer, an expert in failure analysis. “They all gave us good, practical engineering experience to go along with the science, and I just thought that was a super combination. And it kind of leads up to where I am now. It was probably partly the experience of having had those kinds of professors.”

There was a benefit in the location too, being near to steel mills on Chicago’s South Side and in Northwest Indiana, he was able to see metallurgy in action. The atmosphere at IIT was so agreeable he stayed on after he earned an undergraduate degree in 1978, starting immediately in the doctoral (Ph.D.) program there.