Improving the mechanical properties and increasing the stability of alloy modification processes are very important aspects of metalcasting: It makes it possible to reduce the wall thickness of cast products. One way to enhance the results of the alloy modification process is electric field treatment of the liquid metal with particles of a modifier introduced therein.

The total energy for a thermodynamic system of the molten metal Eme is equal to the sum of the internal energy E1 of the whole physical object (system) and the external energy, which includes the kinetic energy E2 of the object and the potential energy E3 of the particles of the object under the external force fields, i.e.:

The energy E1 includes all forms of energy, which the object in question (the total volume of the molten alloy) possesses, and this energy for a particular process at given optimal temperature of the modified alloy can be considered as constant. The amount of energy E2 of a given object at rest is equal to zero. The value E3 varies depending on the presence and magnitude of the external force field.

In the presence of an electric field acting on the molten metal, the energy E3 is spent on:
- Interaction of the atoms of the molten metal with current carriers accelerated by the electric field;
- Impact of current carriers available in liquid alloy on crystallization centers;
- Interaction between elements of crystal alloy emerging under the influence of modifier.

The energy E3 of the electric field is determined by the following equation:

where Y is the conductivity of the molten metal;
E is the electric field;
V is the volume of molten metal;
We is the energy of the electromagnetic field in the molten volume V;
t is time of exposure to the electric field; and
Π is the pointing vector of flux entering the closed surface S of the melt.

The last term in this equation, which is the energy of an electric current, can be set equal to zero if the frequency of current is standard for plants.

The first term in this equation, which is the energy of the current, describes the loss of energy due to heating, which occurs in the conductor due to the Joule-Lenz law. The second term is equal to energy change of the electromagnetic field in time and occurs when a current is passed through the wire, which is the metal melt.

It should be noted that the magnitude of the electromagnetic field is small, if we use the method of conductive current supply, and therefore its effect on the molten metal can be ignored.

Hence, the major factor affecting the electric current in this processing method is the energy dissipated in the conductor by the Joule –Lenz law. In the case of electric current flow passing through the liquid alloy, this energy is released in the local volume of the melt located in the inter-electrode space, causing an intensification of convective flows in the whole volume of the liquid alloy, which improves the conditions of mass transfer of chemical elements from dissolving modifier particles to the molten metal.

As shown by the results of experiments for the process of modifying gray iron, with σv = 250 MPa, the values of the degree of assimilation for silicon-bearing inoculant (Si = 75.0%), and values of the coefficients of dissolution rate of a modifier obtained by "solid-liquid" contacts, may vary significantly. This change depends on the range of the melt processing conditions by the electric current during inoculation (see results in Table 1.)

The growth rate of dissolution of the particles in the liquid inoculant alloy increases the level of alloy absorption of a modifier and makes it possible to reduce the percentage of an input modifier in the absence of requirements to increase the strength of the modified alloy.

Growth of the energy of the liquid alloy Eme by increasing the value of E3 facilitates the process of overcoming the energy barrier of alloy crystallization, related to the occurrence of the elements of alloy crystals.