Optimizing your melt system to reach the lowest possible kilowatts (kW) and kVA of demand as part of your overall energy management program is critical to competitiveness in an industry where energy costs are a constant concern. The importance of melt-shop power supply utilization, efficiency and performance, and how it impacts power demand should be examined carefully. It directly influences the connected kW or kVA of demand for a given production rate. By increasing your melt shop power utilization rate you will increase and maximize the volume of metal poured per kW and kVA of demand. There are various ways that you can review these factors within your own foundry to find additional opportunities for conserving melt shop energy demand and usage.

By examining a typical melt shop and its energy usage we will find that melting represents the highest percentage of energy consumption in the foundry. Melting typically represents over 50% of the overall melt shop energy usage. Therefore, it offers the best opportunity for energy demand and usage cost reduction.

There are many critical factors influencing production versus demand, including efficiency, melt system performance, power supply technology and power utilization. The factors that are specifically part of power utilization include equipment type and configuration, operating practices, melt preparation, and the charging and pouring processes.