As an engineering material, titanium has much to offer: it is lightweight but strong, with the highest ratio of strength-to-mass of any metallic element; and yet it is corrosion-resistant, and adaptable via alloying to numerous applications. Defense and aerospace markets have been driving demand for titanium alloys and parts formed in titanium for the past few decades.

The main disadvantage of titanium is a considerable one for manufacturing, however: it is highly reactive, so many casting and fabricating processes must be performed in a vacuum or purged atmosphere.

Three years ago the European Commission authorized a research program — called the COLTS project (Casting of Large Titanium Structures) — linking European and Chinese industrial teams, to refine centrifugal and gravity casting techniques so that large Ti components might be manufactured cost-effectively.

Centrifugal casting is commonly used to produce thin-walled parts in high volumes, as would be expected for aerospace structural parts.

With the emphasis on cost-efficiency, the initial focus of the research involved skull melting of titanium, because it limits the superheat of the alloy (Ti6Al4V) to about 40°C above its melting point. Then, because of the relatively low temperature, centrifugal casting or gravity casting is indicated, for effective mold filling.

The cast designs under study are two different aerospace structures, 1.5 to 4 meters long.

Now, casting process simulation software developer ESI Group is due to release the results of its study into process modeling of centrifugal casting for large titanium structural components. ESI said the results would contribute to the further progress of the COLTS project.